Predicting the Output Error of a Coriolis Flowmeter under Gas-Liquid Two-Phase Conditions through Analytical Modelling

Jinyu Liu1,2, Tao Wang1,2, Yong Yan1,*, Xue Wang3

1School of Engineering and Digital Arts, University of Kent, Canterbury, Kent CT2 7NT, U.K.
2KROHNE Ltd., Wellingborough NN8 6AE, U.K.
3School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, Kent CT2 7FS, U.K.

* E-mail (corresponding author): Y.Yan@kent.ac.uk
Outline

• Introduction
• Methodology
• Experimental Work
• Data Interpretation
• Conclusions
Introduction

Gas-liquid two-phase flow

- Complex, liquid dominant flow (0-40% GVF)
- Unavoidable in many industrial processes
- Low uncertainty in overall measurement is required
Introduction

Typical application scenario

- 0.3% uncertainty under single-phase conditions
- 0.5% overall uncertainty

![Graph showing bunkering start, gas entrainments, and bunkering finish]
KROHNE OPTIMASS 6400:

- 0.1% error, most accurate single-phase flowmeter
- Direct mass flow measurement
- Independent density measurement
- Additional signals to provide diagnosis information
- Error curve is reproducible
Introduction

Coriolis flowmeter KROHNE OPTIMASS 6400:
• 0.1% error, most accurate single-phase flowmeter
• Direct mass flow measurement
• Independent density measurement
• Additional signals to provide diagnosis information
• Error curve is reproducible
Typical error curve under gas-liquid two-phase flow
Methodology

Existing analytical models

• Decoupling error

\[E_{d,qm} = \frac{1-F}{1-\alpha} \alpha \]
Methodology

Existing analytical models

• Compressibility error \[E_{C,q_m} = \frac{1}{2} \left(\frac{\omega}{c} b \right)^2 \]
Methodology

Research Gap: factors not considered in existing models

- Decoupling error
 - GVF
 - Bubble size & distribution
- Compressibility error
 - Tube diameter
 - Vibration frequency
 - Speed of sound of fluid
- Damping
 - Liquid flowrate
 - Drive gain

![Graph showing relative error in mass flowrate against Reference GVF(%) with experimental data and model predicted results.](image-url)
Methodology

Improved analytical models

• Decoupling error

\[E_{d,q_m} = \frac{1-F'}{1-\alpha} \alpha; \quad F' = C_F F (1 - \alpha) \]

• Compressibility error

• Adding damping error term

\[E_E = C_E G_D \alpha q_m \]
Experimental Work

Layout of the test rig

- Water Tank
- Water centrifugal pump
- Air compressor
- Air reference thermal mass flowmeter
- Water reference Coriolis flowmeter
- Flow conditioner
- Sight glass
- Coriolis flowmeter under test
- DP transmitter
- Regulation valve
- Weighing system
- Flow conditioner
- DP transmitter
- Water
- Centrifugal pump
- Air injection locations
Test matrix

<table>
<thead>
<tr>
<th>Data Sets</th>
<th>Injection Location</th>
<th>Flow conditioners</th>
<th>Temperature (°C)</th>
<th>Pressure (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>data01</td>
<td>1 bottom</td>
<td>Hybrid@2U</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data02</td>
<td>1 bottom</td>
<td>Hybrid@4U</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data03</td>
<td>1 top</td>
<td>Grid@4D</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data04</td>
<td>1 top</td>
<td>Hybrid@2U</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data05</td>
<td>1 top</td>
<td>Hybrid@4U</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data06</td>
<td>2 bottom</td>
<td>Hybrid@2U</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data07</td>
<td>2 bottom</td>
<td>Hybrid@4U</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data08</td>
<td>2 top</td>
<td>Hybrid@2U</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data09</td>
<td>2 top</td>
<td>Hybrid@4U</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data10</td>
<td>1 top</td>
<td>no</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data11</td>
<td>1 top</td>
<td>no</td>
<td>20</td>
<td>0.7</td>
</tr>
<tr>
<td>data12</td>
<td>1 top</td>
<td>no</td>
<td>40</td>
<td>0.2</td>
</tr>
<tr>
<td>data13</td>
<td>2 bottom</td>
<td>no</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data14</td>
<td>2 bottom</td>
<td>no</td>
<td>20</td>
<td>0.7</td>
</tr>
<tr>
<td>data15</td>
<td>2 bottom</td>
<td>no</td>
<td>40</td>
<td>0.2</td>
</tr>
<tr>
<td>data16</td>
<td>1 bottom</td>
<td>no</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data17</td>
<td>1 bottom</td>
<td>no</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data18</td>
<td>2 top</td>
<td>no</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data19</td>
<td>4 bottom</td>
<td>no</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data20</td>
<td>1 top</td>
<td>no</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data21</td>
<td>2 bottom</td>
<td>no</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data22</td>
<td>1 top</td>
<td>no</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data23</td>
<td>1 top</td>
<td>no</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data24</td>
<td>2 bottom</td>
<td>no</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data25</td>
<td>1 top</td>
<td>Swirl@2D</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data26</td>
<td>2 bottom</td>
<td>Swirl@2D</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data27</td>
<td>2 bottom</td>
<td>Grid@2D</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data28</td>
<td>1 top</td>
<td>Grid@2D</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>data29</td>
<td>1 top</td>
<td>Grid@4D</td>
<td>20</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Experimental Work

Typical test section (e.g. setup 1)

Water reference flowmeter

Meter under test
Experimental Work

Typical test section (e.g. setup 3 & 4)
Data Interpretation

- For the majority test setups:
 - Mass relative error is within 10%
 - GVF absolute error is within 5% (refer to paper for details)
 - Application range extended from 15% GVF to at least 40% GVF
For the minority test setups:

- Cannot predict as accurate especially at high flowrate
- Such test setups are not common in industry
Conclusions

• There are 2314 out of 2457 (94.2%) predictions of mass flowrate that are within 10% error
• There are 2403 out of 2457 (97.8%) predictions of GVF measurements are within 5% error
• The applicable range of the model is extended from maximum 15% GVF to at least 40% GVF
• A better understanding of the gas-liquid interaction inside the vibrating tubes of a Coriolis flowmeter is achieved.
The authors acknowledge Innovate UK for supporting the Knowledge Transfer Partnership (KTP) project