Modeling of the Flow Comparator as Calibration Device for High Pressure Natural Gas Flow Metering in Modelica

Sukhwinder Singh, Gerhard Schmitz, Bodo Mickan

Institute for Engineering Thermodynamics
Hamburg University of Technology

26.06.2019, Lissabon
Piston Prover

- Continuous calibration chain
- Traceability to base units with primary standards

- Primary standard for high pressure natural gas flow
- Operated at pigsar™, a high pressure test facility for gas meters

- Operating volume flow rate limited to 450 m³/h
 → Development of new primary standard with higher volume flow rate

Source: www.pigsar.de
Flow Comparator Prototype

Flow sensor

Differential pressure sensor

Stator package

Check valve

Wheels

Cable grommet with strain relief

Differential pressure sensor
Model overview

Medium
System

Volume

Control Voltage

U_{control}

Linear induction motor

Pipe 1

Pipe 2

Volume 1

Volume 2

Piston

Check Valve

Leakage

TM
Assumptions:
- One dimensional gas flow
- The gas flow is adiabatic
- Potential energy of the gas and heat transfer in the gas is neglected
- Pressure losses are proportional to the dynamic pressure

Boundary Conditions:
- $p_{inlet} = \text{const.}$
- $T = \text{const.}$

Operating Point:
- Inlet pressure: 1 bar
- Inlet temperature: 20 °C
- Volume flow: 50 m³/h – 150 m³/h
Measuring Volumes

• One dimensional flow
• Volume depends on the piston’s position
• Finite volume method for spatial discretization
• Heat transfer between piston and volume

• Storage for mass, energy and momentum
Equation of Motion of Piston

- Uses sliding mass model from MSL
- Friction force includes
 - Piston weight
 - Connection cable weight

\[
m_P \ddot{s}_P = p_1 A_P - p_2 A_P - F_{F,P} + F_{LM}
\]

if \(F_{F,P} > |p_1 A_P - p_2 A_P| + |F_{LM}| \) then \(v_P = 0 \)

\[
F_{F,P} = c_R g m_P + g m_C \frac{S}{l}
\]
Linear Induction Motor

- Similar space-vector equivalent circuit to rotatory induction motor
- Transversal branch with eddy current resistance and magnetizing inductance
 - Vary with \(f(Q) = \frac{1-e^{-Q}}{Q} \) depending on the end effect factor \(Q = \frac{\tau_m R_r}{(L_m+L_{or})v} \)
 - End effect factor depends on air-gap thickness, machine speed and inductor length
Additional Models

Check valve
- Volume flow rate proportional to pressure drop
- Hysteresis to avoid chattering

Leakage
- Models the mass flow between piston and cylinder
- Volume flow rate proportional to pressure drop

Turbine Meter
- Constant pressure drop coefficient
- Relationship between indicated volume flow rate and real volume flow rate

Fan
- Relationship between volume flow rate and system pressure drop
Validation

Validation of linear induction motor model
• Good accordance with measurement data

Validation of piston movement and differential pressure
• Similar piston velocity
• Small offset in differential pressure
Optimization of Control Voltage Trajectory

Optimization for maximum calibration time

- Calibration of TM when differential pressure at piston within set limits
- Excessive increase of control voltage at the start

- Optimization parameters
 - Max. control voltage
 - Time at max. control voltage
 - Min. control voltage
 - Increase of control voltage during calibration
Optimization of Control Voltage Trajectory

Piston velocity
- Piston velocity earlier equal to air flow velocity
- Piston velocity remains constant
- Zero differential pressure at the piston for long period
Summary & Outlook

Summary

- Validation of Flow Comparator Model
- Optimization of control voltage for maximum calibration time
 → lasting zero differential pressure at piston and an increase of available calibration time

Outlook

- Implementation of heat transfer in all models
- More detailed optimization of control voltage trajectory
 - Friction force measurement with high accuracy needed
 - Leakage flow needs to be resolved with higher resolution
Thank you for your attention!

Sukhwinder Singh
Institute for Engineering Thermodynamics
Hamburg University of Technology
Phone: ++49 (40) 42878-2676
Mail: sukhwinder.singh@tuhh.de
Backup

Sukhwinder Singh
Institute for Engineering Thermodynamics
Hamburg University of Technology
Phone: ++49 (40) 42878-2676
Mail: sukhwinder.singh@tuhh.de
Turbine Meters

- Constant pressure drop coefficient
- Relationship between indicated volume flow rate and real volume flow rate
- Coefficients a, b, A and B based on experiments

\[\dot{V}_{i,rel} - (a + bV_{i,rel}) = A\rho V^2 - B\rho V_i \]

Source: www.vemmtec.de
Modelica

- Non-proprietary, object-oriented and equation based language

- Libraries
 - Modelica standard library with 1600 models and 1350 functions

- Simulations environments
 - Dymola by Dassault Systemes
 - AMESim by Siemens PLM Software
 - Jmodelica and Openmodelica (open source)

- Used in many different fields
 - Automotive sector (Daimler, BMW, General Motors ...)
 - Aviation sector (Airbus, DLR ...)
 - Energy sector
Natural Gas Trade Flow

- 3700 bln. m³ natural gas production worldwide in 2017
- Natural Gas is traded between many countries worldwide

Source: BP Statistical Review of World Energy 2018
Measuring principle

Comparison of fluid state up- and downstream of piston

- No difference when piston moves with fluid velocity

Correction Methods:

- Correlation Leakage – Differential pressure at piston
- Correlation Leakage – Velocity through piston